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Notational preliminaries

A subset F of a poset P is an order-filter of P if whenever y ∈ P, x ∈ F ,
and x ≤ y , then y ∈ F .
For A ⊆ P, ↑ A = {x ∈ P | a ≤ x , for some a ∈ A} is the order-filter
generated by A. If A = {a}, ↑ a =↑ {a} is the principal order-filter
generated by a. Order-ideals are defined dually.
⊥P: the least element of a poset P (if it exists). >P: the greatest element.
If X ⊆ P, ∨P X and

∧
P X are, respectively, the join (or least upper

bound) and meet (or greatest lower bound) of X in P whenever they exist.
A map ϕ : P → Q between posets P and Q s.t. for all x , y ∈ P, if x ≤ y
then ϕ(x) ≤ ϕ(y) is isotone or order-preserving. Anti-isotone or
order-reversing maps are defined dually. The poset subscripts are omitted
whenever there is no danger of confusion.
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Residuated maps

Let P and Q be posets. A map ϕ : P → Q is called residuated provided
there exists a map ϕ∗ : Q → P such that ϕ(x) ≤ y ⇐⇒ x ≤ ϕ∗(y), for
all x ∈ P and y ∈ Q. We refer to ϕ∗ as the residual of ϕ.
A simple but useful result:

Lemma
1 If ϕ : Q → P is residuated with residual ϕ∗, then ϕ preserves all
existing joins in P and ϕ∗ preserves any existing meets in Q.

2 Conversely, if P is a complete lattice and ϕ : P→ Q preserves all
joins, then it is residuated.
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Example: Galois theory

Consider a field F together with a field extension L/F. Let:

S(L,F) be the set of all subfields of L that contain F;
for M ∈ S(L,F), GalM(L) be the group of all field automorphisms ϕ
of L such that ϕ|M = id ;
Sg(GalF(L)) be the set of all subgroups of such a group.

Then the maps

f (M) = GalM(L)
f∗(H) = {a ∈ L | ϕ(a) = a for all ϕ ∈ H}

induce a residuated pair (f , f∗) between P = (S(L,F),⊆) and the order
dual Q∂ of Q = (Sg(GalF(L)),⊆).
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Residuated operations

A binary operation · on a poset P = (P,≤) is residuated if there exist
binary operations \ and / on P such that for all x , y , z ∈ P,

x · y ≤ z iff x ≤ z/y iff y ≤ x\z .

Observe:

1 · is residuated if and only if, for all a ∈ P, the maps x 7→ ax (x ∈ P)
and x 7→ xa (x ∈ P) are residuated in the sense of the preceding
definition. Their residuals are the maps y 7→ a\y (y ∈ P) and
y 7→ y/a (y ∈ P), respectively. \ and / are the right residual and
the left residual of ·, respectively.

2 · is residuated if and only if it is order-preserving in each argument
and, for all x , y ∈ P, the sets {z | x · z ≤ y} and {z | z · x ≤ y}
both contain greatest elements, x\y and y/x , respectively.

3 · and ≤ uniquely determine \ and /.
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Terminology and notational conventions

We write xy for x · y , x2 for xx and adopt the convention that, in the
absence of parentheses, · is performed first, followed by \ and /, and
finally by ∧ and ∨.
The residuals may be viewed as generalized division operations, with x/y
being read as “x over y”and y\x as “y under x”. In either case, x is
considered the numerator and y is the denominator.
They can also be viewed as generalized implication operators, with x/y
being read as “x if y”and y\x as “if y then x”. In either case, x is
considered the consequent and y is the antecedent.
Any statement about residuated structures has a “mirror image”obtained
by reading terms backwards (i.e., replacing x · y by y · x and interchanging
x/y with y\x).
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Preservation of meets and joins

Lemma
Let · be a residuated operation on a poset P with residuals \ and /.

1 · preserves all existing joins in each argument; i.e., if ∨X and
∨
Y

exist for X ,Y ⊆ A, then ∨x∈X ,y∈Y (xy) exists and(∨
X
)(∨

Y
)
=

∨
x∈X ,y∈Y

(xy).

2 \ and / preserve all existing meets in the numerator, and convert
existing joins to meets in the denominator, i.e. if

∨
X and

∧
Y exist

for X ,Y ⊆ A, then for any z ∈ A, ∧x∈X (x\z) and ∧y∈Y (z\y) exist
and (∨

X
)∖
z =

∧
x∈X

(x\z) and z
∖(∧

Y
)
=
∧
y∈Y

(z\y).
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Residuated lattices

A residuated lattice is an algebra

L = (L,∧,∨, ·, \,/, 1)

such that:

1 (L,∧,∨) is a lattice;
2 (L, ·, 1) is a monoid;
3 · is residuated, in the underlying partial order, with residuals \,/.

An FL-algebra L = (L,∧,∨, ·, \,/, 1, 0) is an algebra s.t.
(L,∧,∨, ·, \,/, 1) is a residuated lattice and 0 is a distinguished element
(nullary operation) of L.
We use the symbols RL and FL to denote the class of all residuated
lattices and FL-algebras respectively.
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RL and FL are varieties

Proposition
RL and FL are finitely based varieties in their respective languages: the
residuation condition (3) can be replaced by the following equations (and
their mirror images):

(i) y ≤ x\ (xy ∨ z)
(ii) x (y ∨ z) ≈ xy ∨ xz

(iii) y (y\x) ≤ x

Francesco Paoli (Univ. of Cagliari) Tutorial on algebraic logic TACL 2013 9 / 26



Commutative residuated lattices

Two varieties of particular interest are the variety CRL of commutative
residuated lattices and the variety CFL of commutative FL-algebras.
These varieties satisfy the equation xy ≈ yx , and hence the equation
x\y ≈ y/x . Here, → can denote both \ and /.
We always think of these varieties as subvarieties of RL and FL,
respectively, but we slightly abuse notation by listing only one occurrence
of the operation → in describing their members.
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Example: Boolean algebras and Heyting algebras

Example
The variety of Boolean algebras is term-equivalent to the subvariety
BA of CFL satisfying the additional equations
xy ≈ x ∧ y , (x → y)→ y ≈ x ∨ y , and x ∧ 0 ≈ 0. More specifically,
every Boolean algebra B = (B,∧,∨,¬, 1, 0) satisfies the equations
above with respect to ∧,∨, 0, and Boolean implication
x → y = ¬x ∨ y . Conversely, if a (commutative) residuated lattice L
satisfies these equations and we define ¬x = x → 0, then
(L,∧,∨,¬, 1, 0) is a Boolean algebra.
Likewise, the variety of Heyting algebras is term-equivalent to the
subvarietyHA of CFL satisfying the additional equations xy ≈ x ∧ y
and x ∧ 0 ≈ 0.
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Example: Ideals of rings

Example

Let R be a ring with unit and let I (R) denote the set of two-sided ideals
of R. Then I(R) = (I (R),∩,∨, ·, \,/,R, {0}) is a (not necessarily
commutative) FL-algebra, where, for I , J ∈ I (R),

IJ = {
n

∑
k=1

akbk : ak ∈ I ; bk ∈ J; n ≥ 1};

I\J = {x ∈ R : Ix ⊆ J}; and
J/I = {x ∈ R : xI ⊆ J}.
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Example: Lattice-ordered groups

Example

A lattice-ordered group (`-group) is an algebra G =
(
G ,∧,∨, ·,−1 , 1

)
such that (i) (G ,∧,∨) is a lattice; (ii)

(
G , ·,−1 , 1

)
is a group; and (iii)

multiplication is order-preserving in each argument. The variety of
`-groups is term-equivalent to the subvariety LG ofRL defined by the
additional equation (1/x)x ≈ 1.
More specifically, if G =

(
G ,∧,∨, ·,−1 , 1

)
is an `-group and we define

x/y = xy−1,y\x = y−1x , then G = (G ,∧,∨, ·, \,/, 1) is a residuated
lattice satisfying the equation (1/x)x ≈ 1. Conversely, if a residuated
lattice L = (L,∧,∨, ·, \,/, 1) satisfies the last equation and we define
x−1 = 1/x , then L =

(
L,∧,∨, ·,−1 , 1

)
is an `-group. Moreover, this

correspondence is bijective.

Francesco Paoli (Univ. of Cagliari) Tutorial on algebraic logic TACL 2013 13 / 26



Example: MV algebras

Example

MV-algebras are the algebraic counterparts of the infinite-valued
Łukasiewicz propositional logic. An MV-algebra is traditionally
defined as an algebraM = (M,⊕,¬, 0) of language (2, 1, 0) that
satisfies the following equations:

(MV1) x ⊕ (y ⊕ z) ≈ (x ⊕ y)⊕ z
(MV2) x ⊕ y ≈ y ⊕ x
(MV3) x ⊕ 0 ≈ x
(MV4) ¬¬x ≈ x
(MV5) x ⊕¬0 ≈ ¬0
(MV6) ¬(¬x ⊕ y)⊕ y ≈ ¬(¬y ⊕ x)⊕ x

The variety of MV-algebras is term-equivalent to the subvariety,MV ,
of CFL satisfying the extra equations x ∨ y ≈ (x → y)→ y and
x ∧ 0 ≈ 0.
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Example: Semilinear residuated lattices

Example
Many varieties of ordered algebras arising in logic – including Boolean
algebras, Abelian `-groups, and MV-algebras, but not Heyting
algebras and `-groups – are semilinear, that is, generated by their
totally ordered members. An equational basis for the variety SemRL
of semilinear residuated lattices relative toRL consists of the equation

λz (x/(x ∨ y)) ∨ ρw (y/(x ∨ y)) ≈ 1,

where ρw (x) = wx/w ∧ 1,λz (x) = z\xz ∧ 1.
A simplified equational basis for the variety CSemRL of commutative
semilinear residuated lattices relative to CRL consists of the equations

[(x → y) ∨ (y → x)] ∧ 1 ≈ 1 and 1∧ (x ∨ y) ≈ (1∧ x) ∨ (1∧ y).
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Historical note

Morgan Ward and his student R.P. Dilworth, in a series of papers
from the late 1930’s, introduced under the name of residuated lattices
some lattice-ordered structures with a multiplication abstracted from
ideal multiplication, and with a residuation abstracted from ideal
residuation.

Ward and Dilworth’s papers did not have that much immediate
impact. The notion of residuated lattice re-emerged later in the
different contexts of the semantics for fuzzy logics (P. Hàjek) and
substructural logics (H. Ono), and in the setting of studies with a
more pronounced algebraic flavor (K. Blount, C. Tsinakis), with the
latter two streams eventually converging into a single one.
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Historical note

Neither Hájek’s nor Ono’s, nor our offi cial definition of residuated
lattice (essentially due to Blount and Tsinakis), exactly overlaps with
the original definition given by Ward and Dilworth. The Hájek-Ono
residuated lattices are bounded as lattices and integral as partially
ordered monoids. Moreover, multiplication is commutative.
Residuated lattices as defined here need not be bounded or integral;
multiplication is not required to be commutative. The original
Ward-Dilworth residuated lattices lie somewhere in between: the
existence of a top or bottom element is not assumed, but if there is a
top, then it must be the neutral element of multiplication, which is
supposed to be a commutative operation.

Dilworth also introduced a noncommutative variant of his notion of
residuated lattice, abstracted from the residuated lattice of two-sided
ideals of a noncommutative ring, but to the best of our knowledge
this generalization was not taken up again before the work by
Tsinakis and his collaborators.
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RL is an ideal variety

The congruences of residuated lattices are determined by special subsets of
their universes (like for groups or rings). In particular, RL, and hence
FL, is a 1-regular variety: each congruence of an algebra in RL is
determined by its equivalence class of 1. A more economical proof of
1-regularity for RL can be given by observing that this property is a
Mal’cev property: one can establish if a variety has the property by
checking whether it satisfies certain quasi-equations involving finitely many
terms (two, in this special case).
However, a concrete description of these equivalence classes is essential for
developing the structure theory of residuated lattices and its applications
to substructural logics.
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Some terminology

If L is a residuated lattice, the set L
−
= {a ∈ L | a ≤ 1} is called the

negative cone of L. Note that the negative cone is a submonoid of
(L, ·, 1). As such, we will denote it by L− .
Let L ∈ RL. Recall that for each a ∈ L, ρa(x) = ax/a ∧ 1 and
λa(x) = a\xa ∧ 1. We refer to ρa and λa respectively as right and left
conjugation by a. An iterated conjugation map is a finite composition of
right and left conjugation maps.
A subset X ⊆ L is convex if for any x , y ∈ X and a ∈ L, x ≤ a ≤ y implies
a ∈ X ; X is normal if it is closed with respect to all iterated conjugations.
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Two useful lemmas

Lemma

Let L be a residuated lattice and Θ ∈ Con (L). T.f.a.e.:
1 a Θ b
2 [a/b ∧ 1] Θ 1 and [b/a ∧ 1] Θ 1
3 [a\b ∧ 1] Θ 1 and [b\a ∧ 1] Θ 1

Lemma
Suppose that H is a convex normal subalgebra of L. For any a, b ∈ L,

a/b ∧ 1 ∈ H ⇔ b\a ∧ 1 ∈ H.
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From congruences to convex normal subalgebras

Lemma
Let Θ be a congruence on a residuated lattice L. Then
[1]Θ = {a ∈ A | a Θ 1} is a convex normal subalgebra of L.

Proof.
Since 1 is idempotent with respect to all the binary operations of L, [1]Θ
forms a subalgebra of L. Convexity is a consequence of the fact that the
equivalence classes of any lattice congruence are convex. Finally, let
a ∈ [1]Θ and c ∈ L. Then

λc (a) = c\ac ∧ 1 Θ c\1c ∧ 1 = c\c ∧ 1 = 1

so that λc (a) ∈ [1]Θ. Similarly, ρc (a) ∈ [1]Θ.
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From convex normal subalgebras to congruences (1)

Lemma

Let H be a convex normal subalgebra of a residuated lattice L. Then the
following is a congruence on L:

ΘH = {(a, b) | ∃h ∈ H, ha ≤ b and hb ≤ a}
= {(a, b) | a/b ∧ 1 ∈ H and b/a ∧ 1 ∈ H}
= {(a, b) | a\b ∧ 1 ∈ H and b\a ∧ 1 ∈ H}

Proof.
The second and third set are equal by the useful Lemma. If (a, b) is a
member of the second set, letting h = a/b ∧ b/a ∧ 1, we have h ∈ H,
ha ≤ (b/a)a ≤ b and hb ≤ (a/b)b ≤ a, so (a, b) is a member of the first
set. Conversely, if (a, b) is a member of the first set, for some h ∈ H we
have ha ≤ b or h ≤ b/a, whence h ∧ 1 ≤ b/a ∧ 1 ≤ 1. By convexity, we
get b/a ∧ 1 ∈ H. Similarly, a/b ∧ 1 ∈ H.
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From convex normal subalgebras to congruences (2)

Proof.
(continued) It is a simple matter to verify that ΘH is an equivalence. To
prove that it is a congruence, we must establish its compatibility with
respect to multiplication, meet, join, right division, and left division. We
just verify compatibility for multiplication. Suppose that a ΘH b and
c ∈ L. Then

a/b ∧ 1 ≤ ac/bc ∧ 1 ≤ 1
so ac/bc ∧ 1 ∈ H. Similarly, bc/ac ∧ 1 ∈ H so (ac) ΘH (bc). Next,
using the normality of H,

ρc (a/b ∧ 1) = (c [a/b ∧ 1]/c) ∧ 1 ∈ H.

But
ρc (a/b ∧ 1) ≤ [c(a/b)/c ] ∧ 1 ≤ (ca/b) /c ∧ 1 = ca/cb ∧ 1 ≤ 1 ∈ H so
ca/cb ∧ 1 ∈ H. Similarly, cb/ca ∧ 1 ∈ H so (ca) ΘH (cb).
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The bijective correspondence (1)

Theorem
The lattice CN (L) of convex normal subalgebras of a residuated lattice L
is isomorphic to its congruence lattice Con (L). The isomorphism is given
by the mutually inverse maps H 7→ ΘH and Θ 7→ [1]Θ.

Proof.
We have shown both that ΘH is a congruence and that [1]Θ is a member
of CN (L), and it is clear that the maps H 7→ ΘH and Θ 7→ [1]Θ are
isotone. It remains only to show that these two maps are mutually inverse,
since it will then follow that they are lattice homomorphisms.
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The bijective correspondence (2)

Proof.
(continued) Given Θ ∈ Con(L), set H = [1]Θ; we must show that
Θ = ΘH. But this is easy; using the above Lemma,

a Θ b ⇔ (a/b ∧ 1) Θ 1 and (b/a ∧ 1) Θ 1⇔

a/b ∧ 1 ∈ H and b/a ∧ 1 ∈ H ⇔ a ΘH b.

Conversely, for any H ∈ CN (L) we must show that H = [1]ΘH . But

h ∈ H ⇒ h/1∧ 1 ∈ H and 1/h ∧ 1 ∈ H

so h ∈ [1]ΘH . If a ∈ [1]ΘH , then (a, 1) ∈ ΘH and we use the first
description of ΘH above to conclude that there exists some h ∈ H such
that ha ≤ 1 and h = h1 ≤ a. Now it follows from the convexity of H that
h ≤ a ≤ h\1 implies a ∈ H.
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The commutative case

We remark that in the event that L is commutative, then every convex
subalgebra of L is normal. Thus the preceding theorem implies the
following result:

Corollary

The lattice C(L) of convex subalgebras of a commutative residuated
lattice L is isomorphic to its congruence lattice Con (L). The isomorphism
is given by the mutually inverse maps H 7→ ΘH and Θ 7→ [1]Θ.
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